Seismic anisotropy

Stiffness matrix C_{ii}

$C_{ij} =$	(c_{1111})	c_{1122}	c_{1133}	c_{1123}	c_{1113}	c_{1112}
	c_{2211}	c_{2222}	C_{2233}	c_{2223}	c_{2213}	c_{2212}
	c_{3311}	c_{3322}	C_{3333}	C_{3323}	c_{3313}	c_{3312}
	c_{2311}	c_{2322}	C_{2333}	C_{2323}	c_{2313}	c_{2312}
	c_{1311}	c_{1322}	c_{1333}	c_{1323}	c_{1313}	c_{1312}
	(c_{1211})	c_{1222}	c_{1233}	c_{1223}	c_{1213}	c_{1212} /

- 4th order tensor
- 21 independent elements
- symmetric

Rules for indices C_{ii} and c_{iikl}

 $\begin{array}{l} \text{Pairs of (I,j) and (k,l)} \rightarrow \ \text{index C} \\ \text{of } c_{ijkl} & (1,1) \rightarrow 1 \\ (2,2) \rightarrow 2 \\ (3,3) \rightarrow 3 \\ (2,3) \rightarrow 4 \\ (1,3) \rightarrow 5 \\ (1,2) \rightarrow 6 \end{array}$

Type of symmetry	Number of independent elastic coefficients	Typical mineral
isotropic solid	2	volcanic glass
cubic	3	garnet
hexagonal	5	ice
trigonal I	7	ilmenite
trigonal II	6	quartz
tetragonal	6	stishovite
orthorhombic	9	olivine
monoclinic	13	hornblende
triclinic	21	plagioclase

Stack of isotropic layers

Medium with aligned cracks

Stiffness matrix

Isotropic: 2 independent constraints (volcanic glass)

$$C = \begin{pmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu \end{pmatrix}$$

Hexagonal: 5 independent constraints (ice)

$$C = \begin{pmatrix} A & A-2N & F & 0 & 0 & 0 \\ A-2N & A & F & 0 & 0 & 0 \\ F & F & C & 0 & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & N \end{pmatrix}$$

A, C, L, N, F : Love's elastic constants

Wave propagation in anisotropic media

Wave equation in homogeneous anisotropic medium:

$$c_{ijkl}\partial_j\partial_k u_l = \rho\partial_{tt}u_i$$

Plane wave solution of the form:

$$\vec{u}(\vec{r},t) = \vec{a}f(t - \frac{\vec{n}\cdot\vec{r}}{c})$$

Substitution:

$$c_{ijkl}\partial_{j}\partial_{k}[a_{l}f(t-\frac{\vec{n}\cdot\vec{r}}{c})] = \rho\partial_{tt}[a_{i}f(t-\frac{\vec{n}\cdot\vec{r}}{c})]$$

$$c_{ijkl}a_{l}n_{j}n_{k}\frac{1}{c^{2}} = \rho a_{i}$$

$$m_{il}a_{l} = c^{2}a_{i}$$

$$m_{il} = \frac{1}{\rho}c_{ijkl}n_{j}n_{k}$$

$$m_{il} = M = \text{Christoffel matrix}$$

1. Isotropic medium

Substituting the isotropic medium stiffness tensor

$$c_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$
 in

$$m_{il} = \frac{1}{\rho} c_{ijkl} n_j n_k$$

Results in

$$m_{il} = \frac{1}{\rho} [\lambda n_i n_l + \mu (n_i n_l + \delta_{il} (n_1 n_1 + n_2 n_2 + n_3 n_3))]$$

$$m_{il} = \frac{1}{\rho} [\lambda n_i n_l + \mu (n_i n_l + \delta_{il})]$$

Giving the Christoffel matrix

$$M = \frac{1}{\rho} \begin{pmatrix} (\lambda + \mu)n_1^2 + \mu & (\lambda + \mu)n_1n_2 & (\lambda + \mu)n_1n_3 \\ (\lambda + \mu)n_1n_2 & (\lambda + \mu)n_2^2 + \mu & (\lambda + \mu)n_2n_3 \\ (\lambda + \mu)n_1n_3 & (\lambda + \mu)n_2n_3 & (\lambda + \mu)n_3^2 + \mu \end{pmatrix}$$

Eigenvalues $\Lambda_1 = \mu/\rho$ $\Lambda_2 = \mu/\rho$ $\Lambda_3 = (\lambda + 2\mu)/\rho$ Eigenvectors \underline{a} : $a_1n_1 + a_2n_2 + a_3n_3 = 0$ $\underline{a=n}$

Stiffness matrix

Isotropic: 2 independent constraints (volcanic glass)

$$C = \begin{pmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu \end{pmatrix}$$

Hexagonal: 5 independent constraints (ice)

$$C = \begin{pmatrix} A & A-2N & F & 0 & 0 & 0 \\ A-2N & A & F & 0 & 0 & 0 \\ F & F & C & 0 & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & N \end{pmatrix}$$

A, C, L, N, F : Love's elastic constants

2. Hexagonal symmetry

With vertical (x_3) symmetry axis

$$C = \begin{pmatrix} A & A-2N & F & 0 & 0 & 0 \\ A-2N & A & F & 0 & 0 & 0 \\ F & F & C & 0 & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 \\ 0 & 0 & 0 & 0 & 0 & N \end{pmatrix}$$

Choose $\vec{n} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
 $m_{il} = \frac{1}{\rho} c_{ijkl} n_j n_k = \frac{1}{\rho} c_{i11l}$
 $M = \frac{1}{\rho} \begin{pmatrix} c_{1111} & c_{1112} & c_{1113} \\ c_{2111} & c_{2112} & c_{2113} \\ c_{3111} & c_{3112} & c_{3113} \end{pmatrix} = \frac{1}{\rho} \begin{pmatrix} C_{11} & C_{16} & C_{15} \\ C_{61} & C_{66} & C_{65} \\ C_{51} & C_{56} & C_{55} \end{pmatrix}$
 $M = \frac{1}{\rho} \begin{pmatrix} A & 0 & 0 \\ 0 & N & 0 \\ 0 & 0 & L \end{pmatrix}$

Eigenvectors and eigenvalues are ...

2. Hexagonal symmetry

Choose
$$\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

 $m_{il} = \frac{1}{\rho} c_{ijkl} n_j n_k = \frac{1}{\rho} c_{i33l} = \frac{1}{\rho} \begin{pmatrix} L & 0 & 0 \\ 0 & L & 0 \\ 0 & 0 & C \end{pmatrix}$

Eigenvectors and eigenvalues are ...

Figure 3.6-2: The effects of transverse isotropy due to layering.

Weak anisotropy

We get quasi P- and S-waves:

 $\rho V_P^2 = A + B_c \cos 2\theta + B_s \sin 2\theta + C_c \cos 4\theta + C_s \sin 4\theta$ $\rho V_{SH}^2 = D + E_c \cos 4\theta + E_s \sin 4\theta$ $\rho V_{SV}^2 = F + G_c \cos 2\theta + G_s \sin 2\theta$

Surface waves:

 $c(\omega,\theta) = c_0(\omega) + c_1(\omega)\cos 2\theta + c_2(\omega)\sin 2\theta + c_3(\omega)\cos 4\theta + c_4(\omega)\sin 4\theta$

Surface waves – group and phase velocity

Figure 2-5 Illustration of the concept of group velocity v and phase velocity c in anisotropic media (modified from Garmany, 1989). The phase velocity vector c is perpendicular to the phase surface while the group velocity vector v is parallel to the direction of the beam of seismic energy.

Seismic observations of anisotropy

- Shear wave splitting (S-wave birefringence)
- Love/Rayleigh incompatibility
- SH-derived models of the upper mantel have higher velocities than P-SV derived models (body waves)
- Pn velocities are azimuth dependent
- Travel times PKIKP waves: equatorial paths slow, polar paths fast

Shear wave splitting

Shear wave splitting

Pn waves azimuthal anisotropy

(a) Rayleigh wave azimuthal anisotropy

PKIKP wave travel times

PKIKP wave travel times

⁽Deuss, Annu Rev., 2014)

PKIKP wave travel times

Normal mode splitting functions

Lattice preferred orientation (LPO)

(a) Lattice reciperitation due to slip (and twinning)

(a) Dislocation glide

(b) Grain boundary migration

(b) Grain boundary migration

Anisotropic shape distribution of isotropic materials

(a) Stack of isotropic layers

(b) Medium with aligned cracks