Skip to main content
Log in

An up-to-date review on evacuated tube solar collectors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Since the last decades, solar energy has been used worldwide to overcome foreign dependency on crude oil and to control the pollution due to a limited source of non-renewable energy. Evacuated tube solar collectors are the most suitable solar technology for producing useful heat in both low and medium temperature levels. Evacuated tube solar collector is capable of working in hot, mild, cloudy or cold climates where flat plate collector is not an option. The objective of this review paper is the detailed investigation of evacuated tube solar collectors having heat pipe and direct flow are reviewed. All the design parameters which influence the collector performance are investigated and discussed in this work. More specifically, the tracking system, the collector design, the mass flow rate, the optical design and the kind of the working fluid are the main studied parameters. Moreover, this work focuses on the latest developments and advances, providing a review of experimental and numerical studies reported. Lastly, this work presents the future ideas that can be carried out to improve the performance of evacuated tube solar collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H. A review on global solar energy policy. Renew Sustain Energy Rev. 2011;15(4):2149–63.

    Article  Google Scholar 

  2. Mekhilef S, Saidur R, Safari A. A review on solar energy use in industries. Renew Sustain Energy Rev. 2011;15(4):1777–90.

    Article  Google Scholar 

  3. Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev. 2007;11(7):1388–413.

    Article  Google Scholar 

  4. Vimala IM. Energy consumption in India-Recent trends. Asia Pacific J. Res. 2016;I(XXXVI).

  5. Lalwani M, Singh M. Conventional and renewable energy scenario of India : present and future. Can J Electr Electron. Eng. 2010;1(6):122–40.

    Google Scholar 

  6. Panwar V, Tarlochan K. Overview of renewable energy resources of India. Int J Adv Res Electr Electron Instrumen Eng. 2014;3(2):7118–25.

    Google Scholar 

  7. Dhingra R, Jain A, Pandey A, Mahajan S. Assessment of renewable energy in India. Int J Environ Sci Dev. 2014;5(5):459–62.

    Article  CAS  Google Scholar 

  8. Kumar S, Madlener R. CO2 emission reduction potential assessment using renewable energy in India. Energy. 2016;97:273–82.

    Article  Google Scholar 

  9. 2016 Snapshot of Global Photovoltaic Markets. IEA, 2015. http://www.iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2016__1_.pdf. Accessed 29 Nov 2018.

  10. National Solar Mission.

  11. Goswami DY, Frank K, Jan FK. Principles of solar engineering. CRC Press; 2000.

  12. J. Apte, Future advanced windows for zero-energy homes. American Society of Heating, Refrigerating and Air-Conditioning Engineers.

  13. Luque A. Will we exceed 50% efficiency in photovoltaics? J Appl Phy. 2011;110(3):11.

    Article  CAS  Google Scholar 

  14. Ge TS, Wang RZ, Xu ZY, Pan QW, Du S, Chen XM, Ma T, Wu XN, Sun XL, Chen JF. Solar heating and cooling: present and future development. Renew Energy. 2018;126:1126–40.

    Article  Google Scholar 

  15. Ralegaonkar RV, Gupta R. Review of intelligent building construction: a passive solar architecture approach. Renew Sustain Energy Rev 2010;14(8):2238–42.

    Article  Google Scholar 

  16. Mancini T. Advantages of Using Molten Salt. Sandia National Laboratories, 2006.

  17. Hammarström L. Artificial photosynthesis and solar fuels. Acc Chem Res. 2009;42(12):1859–60.

    Article  PubMed  CAS  Google Scholar 

  18. Klesh AT, Kabamba PT. Solar-powered aircraft: energy-optimal path planning and perpetual endurance. J Guidance Control Dyn. 2009;32(4):1320–9.

    Article  Google Scholar 

  19. Trupke T, Green MA, Würfel P. Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys. 2002;92(7):4117–22.

    Article  CAS  Google Scholar 

  20. Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;104:538–53.

    Article  CAS  Google Scholar 

  21. Muhammad MJ, Muhammad IA, Che Sidik NA, Muhammad Yazid MNAW. Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: a review. Int Commun Heat Mass Transf. 2016;76:6–15.

    Article  CAS  Google Scholar 

  22. Khan MMA, Ibrahim NI, Mahbubul IM, Muhammad Ali H, Saidur R, Al-Sulaiman FA. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Sol Energy. 2018;166:334–50.

    Article  CAS  Google Scholar 

  23. Jamar A, Majid ZAA, Azmi WH, Norhafana M, Razak AA. A review of water heating system for solar energy applications. Int Commun Heat Mass Transf. 2016;76:178–87.

    Article  Google Scholar 

  24. Farhana K, et al. Improvement in the performance of solar collectors with nanofluids—A state-of-the-art review. Nano-Struct Nano-Objects. 2019;18:100276.

    Article  CAS  Google Scholar 

  25. Sabiha MA, Saidur R, Mekhilef S, Mahian O. Progress and latest developments of evacuated tube solar collectors. Renew Sustain Energy Rev. 2015;51:1038–54.

    Article  Google Scholar 

  26. Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci. 2004;30(3):231–95.

    Article  CAS  Google Scholar 

  27. Chong KK, Wong CW. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector. Sol Energy. 2009;83(3):298–305.

    Article  CAS  Google Scholar 

  28. Gordon JM, Kreider JF, Reeves P. Tracking and stationary flat plate solar collectors: yearly collectible energy correlations for photovoltaic applications. Sol Energy. 1991;47(4):245–52.

    Article  CAS  Google Scholar 

  29. Pei G, Li G, Zhou X, Ji J, Su Y. Comparative experimental analysis of the thermal performance of evacuated tube solar water heater systems with and without a mini-compound parabolic concentrating (CPC) reflector(C < 1). Energies. 2012;5(4):911–24.

    Article  CAS  Google Scholar 

  30. Kalogirou S. The potential of solar industrial process heat applications. Appl Energy. 2003;76(4):337–61.

    Article  CAS  Google Scholar 

  31. Bhatia SC, Solar thermal energy. In: Advanced renewable energy systems, Woodhead Publishing India, 2019, pp 94–143.

  32. Bermel P, Lee J, Joannopoulos JD, Celanovic I, Soljačie M, Soljačie S¸ 2, SELECTIVE SOLAR ABSORBERS.

  33. Kalogirou SA, Nontracking solar collection technologies for solar heating and cooling systems. Adv Sol Heat Cool. 2016; 63–80.

  34. McConnell RD, Vansant JH. Glass heat pipe evacuated tube solar collector. U.S. Patent 4,474,170, issued October 2, 1984.

  35. Tiwari GN, Tiwari A. Handbook of solar energy: theory, analysis and applications. Springer; 2016. ISBN: 978-981-10-0807-8. https://doi.org/10.1007/978-981-10-0807-8.

  36. Kumar SS, Kumar KM, Kumar SRS. Design of evacuated tube solar collector with heat pipe. Mater Today Proc. 2017;4(14):12641–6.

    Article  Google Scholar 

  37. Abd-Elhady MS, Nasreldin M, Elsheikh MN. Improving the performance of evacuated tube heat pipe collectors using oil and foamed metals. Ain Shams Eng. J. 2018;9(4):2683–9.

    Article  Google Scholar 

  38. Energy S, Chen CJ, Chen CJ. Physics of solar energy. New York: Wiley; 2011.

    Google Scholar 

  39. Barai MK, Saha BB. Energy security and sustainability in Japan. Evergreen. 2018;2(1):49–56.

    Article  Google Scholar 

  40. Abokersh MH, El-Morsi M, Sharaf O, Abdelrahman W. An experimental evaluation of direct flow evacuated tube solar collector integrated with phase change material. Energy. 2017;139:1111–25.

    Article  CAS  Google Scholar 

  41. Ahmad M. Operation and control of renewable energy systems. John Wiley & Sons; 2018.

  42. Moss RW, Henshall P, Arya F, Shire GSF, Hyde T, Eames PC. Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels. Appl Energy. 2018;216:588–601.

    Article  Google Scholar 

  43. Yarshi KAM, Paul B. Analysis of heat transfer performance of flat plate solar collector using CFD. Int J Sci Eng Technol Res. 2015;4(10):3576–80.

    Google Scholar 

  44. Barriga J, Ruiz-de-Gopegui U, Goikoetxea J, Coto B, Cachafeiro H. Selective coatings for new concepts of parabolic trough collectors. Energy Procedia. 2014;49:30–9.

    Article  Google Scholar 

  45. Choudhary T, Shridhar K. Experimental investigation and fabrication of an evacuate tube solar collector. 2013.

  46. Arora S, Chitkara S, Udayakumar R, Ali M. Thermal analysis of evacuated solar tube collectors. J Pet Gas Eng. 2011;2(4):74–82.

    CAS  Google Scholar 

  47. Ayompe LM, Duffy A, McCormack SJ, Conlon M. Validated TRNSYS model for forced circulation solar water heating systems with flat plate and heat pipe evacuated tube collectors. Appl Therm Eng. 2011;31(8–9):1536–42.

    Article  Google Scholar 

  48. Papadimitratos A, Sobhansarbandi S, Pozdin V, Zakhidov A, Hassanipour F. Evacuated tube solar collectors integrated with phase change materials. Sol Energy. 2016;129:10–9.

    Article  CAS  Google Scholar 

  49. Chow T-T, Dong Z, Chan L-S, Fong K-F, Bai Y. Performance evaluation of evacuated tube solar domestic hot water systems in Hong Kong. Energy Build. 2011;43(12):3467–74.

    Article  Google Scholar 

  50. Kumar Sen P, Awtar K, Kumar Bohidar S. A review of major non-conventional energy sources. 2015.

  51. Dincer I. Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev. 2000;4(2):157–75.

    Article  Google Scholar 

  52. Edward S, Siegfried G. Solar collector. 1963

  53. Knowles GW, Sangesland OE, Vroom HJ, Madey RW. U.S. Patent No. 4,059,093. Washington, DC: U.S. Patent and Trademark Office. 1977.

  54. Watkins AW, Watkins IW. U.S. Patent No. 4,987,883. Washington, DC: U.S. Patent and Trademark Office. 1991.

  55. Zhiqiang Y, Harding GL, Window B. Water-in-glass manifolds for heat extraction from evacuated solar collector tubes. Sol Energy. 1984;32(2):223–30.

    Article  Google Scholar 

  56. Ezekwe CI. Thermal performance of heat pipe solar energy systems. Sol Wind Technol. 1990;7(4):349–54.

    Article  Google Scholar 

  57. El-Nashar AM. The effect of dust accumulation on the performance of evacuated tube collectors. Sol Energy. 1994;53(1):105–15.

    Article  Google Scholar 

  58. Zinian H, Hongchuan G, Fulin J, Wei L. A comparison of optical performance between evacuated collector tubes with flat and semicylindric absorbers. Sol Energy. 1997;60(2):109–17.

    Article  Google Scholar 

  59. Benz N, Beikircher T. High efficiency evacuated flat-plate solar collector for process steam production. Sol Energy. 1999;65(2):111–8.

    Article  CAS  Google Scholar 

  60. Mills DR, Morrison GL. Compact linear fresnel reflector solar thermal powerplants. Sol energy. 2000;68(3):263–83.

    Article  Google Scholar 

  61. Mills DR, Morrison GL. Compact linear fresnel reflector solar thermal powerplants. Sol Energy. 2000;68(3):263–83.

    Article  Google Scholar 

  62. Kumar R, Adhikari R, Garg H, Kumar A. Thermal performance of a solar pressure cooker based on evacuated tube solar collector. Appl Therm Eng. 2001;21(16):1699–706.

    Article  CAS  Google Scholar 

  63. Yogev A, Krupkin V, Epstein M. U.S. Patent No. 5,578,140. Washington, DC: U.S. Patent and Trademark Office. 1996.

  64. Esen M. Thermal performance of a solar cooker integrated vacuum-tube collector with heat pipes containing different refrigerants. Sol Energy. 2004;76(6):751–7.

    Article  CAS  Google Scholar 

  65. Zakhidov AA, Pozdin VA, Hassanipour F, Darmanyan S, Papadimitratos A. Integration of phase change materials inside evacuated tube solar collector for storage and transfer of thermal energy. U.S. Patent Application 14/455,766, filed February 12, 2015.

  66. Sabiha MA, Saidur R, Hassani S, Said Z, Mekhilef S. Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers Manag. 2015;105:1377–88.

    Article  CAS  Google Scholar 

  67. Assilzadeh F, Kalogirou SA, Ali Y, Sopian K. Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors. Renew Energy. 2005;30(8):1143–59.

    Article  CAS  Google Scholar 

  68. Harry E. Novinger. Evacuated-tube solar collector. 1978.

  69. Kim Y, Seo T. Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube. Renew Energy. 2007;32(5):772–95.

    Article  CAS  Google Scholar 

  70. El-nashar AM. The economic feasibility of small solar MED seawater desalination plants for remote arid areas. Desalination. 2001;134(1–3):173–86.

    Article  CAS  Google Scholar 

  71. Ma L, Lu Z, Zhang J, Liang R. Thermal performance analysis of the glass evacuated tube solar collector with U-tube. Build Environ. 2010;45(9):1959–67.

    Article  Google Scholar 

  72. Morrison GL, Budihardjo I, Behnia M. Water-in-glass evacuated tube solar water heaters. Sol Energy. 2004;76(1–3):135–40.

    Article  CAS  Google Scholar 

  73. Sharma SD, et al. Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol Energy. 2005;78(3):416–426.

    Article  Google Scholar 

  74. Duangthongsuk W, Wongwises S. Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int Commun Heat Mass Transf. 2008;35(10):1320–6.

    Article  CAS  Google Scholar 

  75. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54(17–18):4051–68.

    Article  CAS  Google Scholar 

  76. Lee J-H, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51(11–12):2651–6.

    Article  CAS  Google Scholar 

  77. Rudyak VY, Minakov AV. Thermophysical properties of nanofluids. Eur Phys J E. 2018;41(1):15.

    Article  PubMed  CAS  Google Scholar 

  78. Zeinali Heris S, Etemad SG, Nasr Esfahany M. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33(4):529–35.

    Article  CAS  Google Scholar 

  79. Selvakumar P, Somasundaram P, Thangavel P. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough. Energy Convers Manag. 2014;85(March):505–10.

    Article  CAS  Google Scholar 

  80. Zhang XR, Yamaguchi H. An experimental study on evacuated tube solar collector using supercritical CO2. Appl Therm Eng. 2008;28(10):1225–33.

    Article  CAS  Google Scholar 

  81. Vajjha RS, Das DK, Chukwu GA. An experimental determination of the viscosity of Propylene Glycol/Water based nanofluids and development of new correlations. J Fluids Eng. 2015;137(8).

  82. Kasera S, Chandra Bhaduri S. Performance of R407C as an alternate to R22: a review. Energy Procedia. 2017;109:4–10.

    Article  CAS  Google Scholar 

  83. Lu L, Liu ZH, Xiao HS. Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors. Part 1: indoor experiment. Sol Energy. 2011;85(2):379–87.

    Article  CAS  Google Scholar 

  84. Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S. An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy. 2012;86(2):771–9.

    Article  CAS  Google Scholar 

  85. Wang J, Yin Z, Qi J, Ma G, Liu X. Medium-temperature solar collectors with all-glass solar evacuated tubes. Energy Procedia. 2015;70:126–9.

    Article  CAS  Google Scholar 

  86. Bellos E, Said Z, Tzivanidis C. The use of nanofluids in solar concentrating technologies: a comprehensive review. J clean Prod. 2018;196:84–99.

    Article  CAS  Google Scholar 

  87. Faizal M, Saidur R, Mekhilef S, Alim MA. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers Manag. 2013;76:162–8.

    Article  CAS  Google Scholar 

  88. Liu ZH, Hu RL, Lu L, Zhao F, Xiao HS. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector. Energy Convers Manag. 2013;73:135–43.

    Article  CAS  Google Scholar 

  89. Natarajan E, Sathish R. Role of nanofluids in solar water heater. Int J Adv Manuf Technol. 2009;1–5.

  90. Saidur R, Meng TC, Said Z, Hasanuzzaman M, Kamyar A. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Transf. 2012;55(21–22):5899–907.

    Article  CAS  Google Scholar 

  91. Tyagi H, Phelan P, Prasher R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J Sol Energy Eng. 2009;131(4):041004.

    Article  CAS  Google Scholar 

  92. Liang R, Ma L, Zhang J, Zhao D. Theoretical and experimental investigation of the filled-type evacuated tube solar collector with U tube. Sol Energy. 2011;85(9):1735–44.

    Article  Google Scholar 

  93. Mahbubul IM, Khan MMA, Ibrahim NI, Ali HM, Al-Sulaiman FA, Saidur R. Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renew Energy. 2018;121:36–44.

    Article  CAS  Google Scholar 

  94. Iranmanesh S, Ong HC, Ang BC, Sadeghinezhad E, Esmaeilzadeh A, Mehrali M. Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid. J Clean Prod. 2017;162:121–9.

    Article  CAS  Google Scholar 

  95. Moghadam AJ, Farzane-Gord M, Sajadi M, Hoseyn-Zadeh M. Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp Therm Fluid Sci. 2014;58:9–14.

    Article  CAS  Google Scholar 

  96. Ghaderian J, et al. Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations. Appl Therm Eng. 2017;121(April):520–36.

    Article  CAS  Google Scholar 

  97. Sokhansefat T, Kasaeian AB, Kowsary F. Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sustain Energy Rev. 2014;33:636–44.

    Article  CAS  Google Scholar 

  98. Ozsoy A, Corumlu V. Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications. Renew Energy. 2018;122:26–34.

    Article  CAS  Google Scholar 

  99. Mahendran M, Lee GC, Sharma KV, Shahrani A, Bakar RA. Performance of evacuated tube solar collector using water-based titanium oxide nanofluid. J Mech Eng Sci. 2012;3:301–10.

    Article  Google Scholar 

  100. Sarafraz MM, Safaei MR. Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy. 2019;142:364–72.

    Article  CAS  Google Scholar 

  101. de P. R. Teles M, Ismail KAR, Arabkoohsar A. A new version of a low concentration evacuated tube solar collector: optical and thermal investigation. Sol. Energy. 2019;180:324–39.

    Article  Google Scholar 

  102. Li Q, et al. Experiment and simulation study on convective heat transfer of all-glass evacuated tube solar collector. Renew Energy. 2020;152:1129–39.

    Article  Google Scholar 

  103. Chopra K, Tyagi VV, Pathak AK, Pandey AK, Sari A. Experimental performance evaluation of a novel designed phase change material integrated manifold heat pipe evacuated tube solar collector system. Energy Convers Manag. 2019;198:111896.

    Article  Google Scholar 

  104. Said Z. Thermophysical and optical properties of SWCNTs nanofluids. Int Commun Heat Mass Transf. 2016;78:207–13.

    Article  CAS  Google Scholar 

  105. Bergman TL, Incropera FP, Lavine AS, DeWitt DP. Introduction to heat transfer. John Wiley & Sons; 2011.

  106. Gupta M, Singh V, Said Z. Heat transfer analysis using zinc Ferrite/water (Hybrid) nanofluids in a circular tube: an experimental investigation and development of new correlations for thermophysical and heat transfer properties. Sustain Energy Technol Assess. 2020;39:100720.

    Google Scholar 

  107. Vajjha RS, Das DK. A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int J Heat Mass Transf. 2012;55(15–16):4063–78.

    Article  CAS  Google Scholar 

  108. Kousksou T, Strub F, Castaing Lasvignottes J, Jamil A, Bédécarrats JP. Second law analysis of latent thermal storage for solar system. Sol Energy Mater Sol Cells. 2007;91(14):1275–81.

    Article  CAS  Google Scholar 

  109. Kalogirou SA. Solar energy engineering: processes and systems. Academic Press; 2013.

  110. McDonald G. A preliminary study of a solar selective coating system using a black cobalt oxide for high temperature solar collectors. Thin Solid Films. 1980;72(1):83–8.

    Article  CAS  Google Scholar 

  111. Du M, et al. Optimization design of Ti0.5Al0.5 N/Ti0.25Al0.75 N/AlN coating used for solar selective applications. Sol Energy Mater Sol Cells. 2011;95(4):1193–6.

    Article  CAS  Google Scholar 

  112. Nkwetta DN, Smyth M, Zacharopoulos A, Hyde T. Optical evaluation and analysis of an internal low-concentrated evacuated tube heat pipe solar collector for powering solar air-conditioning systems. Renew Energy. 2012;39(1):65–70.

    Article  Google Scholar 

  113. Chow SP, Harding GL, Window B, Cathro KJ. Effect of collector components on the collection efficiency of tubular evacuated collectors with diffuse reflectors. Sol Energy. 1984;32(2):251–62.

    Article  Google Scholar 

  114. Said Z, Arora S, Bellos E. A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renew Sustain Energy Rev. 2018;94:302–16.

    Article  CAS  Google Scholar 

  115. Theunissen P-H, Beckman WA. Solar transmittance characteristics of evacuated tubular collectors with diffuse back reflectors. Sol Energy. 1985;35(4):311–20.

    Article  Google Scholar 

  116. Zambolin E, del Col D. An improved procedure for the experimental characterization of optical efficiency in evacuated tube solar collectors. Renew Energy. 2012;43:37–46.

    Article  Google Scholar 

  117. Zhai H, Dai YJ, Wu JY, Wang RZ, Zhang LY. Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens. Energy Convers Manag. 2010;51(1):48–55.

    Article  CAS  Google Scholar 

  118. Said Z, Saidur R, Rahim NA. Optical properties of metal oxides based nanofluids. Int Commun Heat Mass Transf. 2014;59:46–54.

    Article  CAS  Google Scholar 

  119. Budihardjo I, Morrison GL, Behnia M. Natural circulation flow through water-in-glass evacuated tube solar collectors. Sol Energy. 2007;81(12):1460–72.

    Article  CAS  Google Scholar 

  120. Ling D, Liu G, Mo G, Li J, Wang X. Research on annual thermal performance of solar water heating balcony system. Energy Procedia. 2015;70:71–8.

    Article  Google Scholar 

  121. Morrison GL, Budihardjo I, Behnia M. Measurement and simulation of flow rate in a water-in-glass evacuated tube solar water heater. Sol Energy. 2005;78(2):257–67.

    Article  CAS  Google Scholar 

  122. Akanmu WP, Bajere PA. Investigation of temperature and flow distribution in a serially connected thermosyphon solar water heating collector system. J Energy Technol Policy. 2015;5(2):56–68.

    Google Scholar 

  123. Shah LJ, Furbo S. Theoretical flow investigations of an all glass evacuated tubular collector. Sol Energy. 2007;81(6):822–8.

    Article  CAS  Google Scholar 

  124. Chopra K, Tyagi VV, Pandey AK, Sharma RK, Sari A. PCM integrated glass in glass tube solar collector for low and medium temperature applications: thermodynamic & techno-economic approach. Energy. 2020;198:117238.

    Article  Google Scholar 

  125. Budihardjo I, Morrison GL. Performance of water-in-glass evacuated tube solar water heaters. Sol Energy. 2009;83(1):49–56.

    Article  CAS  Google Scholar 

  126. Kumar Y, Yadav A. Thermal analysis of evacuated tube collector having different shapes of flow passages inside the tube. J Mater Sci Mech Eng, 2(10): 77–81.

  127. Tang R, Yang Y, Gao W. Comparative studies on thermal performance of water-in-glass evacuated tube solar water heaters with different collector tilt-angles. Sol Energy. 2011;85(7):1381–9.

    Article  CAS  Google Scholar 

  128. Tang R, Gao W, Yu Y, Chen H. Optimal tilt-angles of all-glass evacuated tube solar collectors. Energy. 2009;34(9):1387–95.

    Article  Google Scholar 

  129. Li M, Wang LL. Investigation of evacuated tube heated by solar trough concentrating system. Energy Convers Manag. 2006;47(20):3591–601.

    Article  CAS  Google Scholar 

  130. Harding GL, Zhiqiang Y, Mackey DW. Heat extraction efficiency of a concentric glass tubular evacuated collector. Sol Energy. 1985;35(1):71–9.

    Article  Google Scholar 

  131. Zambolin E, Del Col D. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol Energy. 2010;84(8):1382–96.

    Article  CAS  Google Scholar 

  132. Mishra D, Saikhedkar NK. A study and theoretical analysis of evacuated tube collectors as solar energy conversion device for water heating. Adv Phys Lett. 2014;1(3):30–9.

    Google Scholar 

  133. Ayompe LM, Duffy A. Thermal performance analysis of a solar water heating system with heat pipe evacuated tube collector using data from a field trial. Sol Energy. 2013;90:17–28.

    Article  Google Scholar 

  134. Hayek M, Assaf J, Lteif W. Experimental investigation of the performance of evacuated-tube solar collectors under eastern mediterranean climatic conditions. Energy Procedia. 2011;6:618–26.

    Article  Google Scholar 

  135. Chamsa-ard W, Sukchai S, Sonsaree S, Sirisamphanwong C. Thermal performance testing of heat pipe evacuated tube with compound parabolic concentrating solar collector by ISO 9806–1. Energy Procedia. 2014;56:237–46.

    Article  Google Scholar 

  136. Mills D. Advances in solar thermal electricity technology. Sol Energy. 2004;76(1–3):19–31.

    Article  Google Scholar 

  137. Mehmood A, Waqas A, Said Z, Rahman SMA, Akram M. Performance evaluation of solar water heating system with heat pipe evacuated tubes provided with natural gas backup. Energy Rep. 2019;5:1432–4.

    Article  Google Scholar 

  138. Kim H, Ham J, Park C, Cho H. Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids. Energy. 2016;94:497–507.

    Article  CAS  Google Scholar 

  139. Yurddaş A. Optimization and thermal performance of evacuated tube solar collector with various nanofluids. Int J Heat Mass Transf. 2020;152:119496.

    Article  CAS  Google Scholar 

  140. Rittidech S, Donmaung A, Kumsombut K. Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV). Renew Energy. 2009;34(10):2234–8.

    Article  CAS  Google Scholar 

  141. Chopra K, Tyagi VV, Pandey AK, Sari A. Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications. Appl Energy. 2018;228:351–89.

    Article  Google Scholar 

  142. Chopra K, Pathak AK, Tyagi VV, Pandey AK, Anand S, Sari A. Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: an experimental assessment. Energy Convers Manag. 2020;203:112205.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Himanshu Tyagi, Associate professor, Indian Institute of Technology, Ropar, and Dr. H. C. Thakur, Assistant professor, Gautam Buddha University, Greater Noida, for their valuable support and inspiration. Dr. Zafar Said would like to thank the University of Sharjah for their financial support (Projects #18020406118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar Said.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Said, Z. & Bellos, E. An up-to-date review on evacuated tube solar collectors. J Therm Anal Calorim 145, 2873–2889 (2021). https://doi.org/10.1007/s10973-020-09953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09953-9

Keywords

Navigation